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CoordinatedBeamforming for MISO Interference
Channel: Complexity Analysis and Efficient

Algorithms∗

Ya-Feng Liu†, Yu-Hong Dai†, and Zhi-Quan Luo‡

Abstract— In a cellular wireless system, users located at cell
edges often suffer significant out-of-cell interference. Assuming
each base station is equipped with multiple antennas, we can
model this scenario as a multiple-input single-output (MISO)
interference channel. In this paper we consider a coordinated
beamforming approach whereby multiple base stations jointly
optimize their downlink beamforming vectors in order to simul-
taneously improve the data rates of a given group of cell edge
users. Assuming perfect channel knowledge, we formulate this
problem as the maximization of a system utility (which balances
user fairness and average user rates), subject to individual power
constraints at each base station. We show that, for the single
carrier case and when the number of antennas at each base
station is at least two, the optimal coordinated beamforming
problem is NP-hard for both the harmonic mean utility and the
proportional fairness utility. For general utilities, we propose a
cyclic coordinate descent algorithm, which enables each trans-
mitter to update its beamformer locally with limited information
exchange, and establish its global convergence to a stationary
point. We illustrate its effectiveness in computer simulations by
using the space matched beamformer as a benchmark.

Index Terms— MISO interference channel, coordinated beam-
forming, complexity, cyclic coordinate descent algorithm, global
convergence.

I. I NTRODUCTION

In a conventional wireless cellular system, base stations
from different cells communicate with their respective remote
terminals independently. Signal processing is performed on an
intra-cell basis, while the out-of-cell interference is treated as
background noise. This architecture often causes undesirable
service outages to users situated near cell edges where the out-
of-cell interference can be severe. Since the conventional intra-
cell signal processing can not effectively mitigate the impact
of inter-cell interference, we are led to consider coordinated
base station beamforming across multiple cells in order to
improve the services to edge users. In this paper, we focus on
the downlink scenario where the base stations are equipped
with multiple antennas and model it as a MISO interference

∗ Ya-Feng Liu and Yu-Hong Dai are supported by the National Natural
Science Foundation of China, Grant number 10831006, and the CAS Grant
kjcx-yw-s7-03. Zhi-Quan Luo is supported by the Army Research Office,
Grant number W911NF-09-1-0279, and by the National Science Foundation,
Grant number CMMI-0726336.
† State Key Lab. of Scientific and Engineering Computing, Beijing, 100190,

China. (e-mail:{yafliu,dyh }@lsec.cc.ac.cn)
‡ Department of Electrical Computer Science Engineering, University of

Minnesota, Minneapolis, 55455, USA. (e-mail:luozq @umn.edu)

channel. We consider joint optimal beamforming across multi-
ple base stations to simultaneously improve the data rates of a
given group of cell edge users. Assuming that the channel state
information (CSI) is known, we formulate this problem as the
maximization of a system utility (which balances user fairness
and average user rates), subject to individual power constraints
at each base station. We show that, for the single carrier case
and when the number of antennas at each base station is at least
two, the optimal coordinated beamforming problem is NP-
hard for both the harmonic mean utility and the proportional
fairness utility. This NP-hardness result is in contrast to the
single antenna case for which the same optimization problem
is convex for both the harmonic mean and proportional fairness
utility functions [1]. For the min-rate utility, this problem is
known to be also solvable in polynomial time [1], [2].

In addition to the complexity analysis, we propose a prac-
tical iterative cyclic coordinate descent algorithm for the
multi-cell coordinated beamforming problem by exploiting
the separability of power constraints. We prove the global
convergence of this cyclic coordinate descent algorithm (to
a stationary point). Numerical experiments are also presented
to illustrate the effectiveness of the proposed algorithm.

A. Related Work

Downlink beamforming has been studied extensively in the
single cell setup [3], [4]. For the multi-cell interference chan-
nel, the reference [5] considered coordinated beamforming for
the minimization of total weighted transmitted power across
the base stations subject to individual signal-to-interference-
plus-noise-ratio (SINR) constraints at the remote users. It turns
out this problem can be transformed into a convex second
order conic programming (SOCP) and efficiently solved. How-
ever, the maximization of weighted sum rates for a multi-cell
interference channel under individual power constraints is NP-
hard even for the single antenna and the single carrier case [1].
In fact, more is known about the single antenna interference
channel case. For instance, if the system utility is changed into
either the geometric mean rates (i.e., proportional fairness),
the harmonic mean rates, or the min-rate, the corresponding
utility maximization problem (for the single tone case) can
be converted to a convex optimization problem and solved
efficiently to global optimality [1], [6]. However, when the
number of tones is more than two, then all of the aforemen-
tioned power control problems are NP-hard. The focus of this
paper is to study the multi-antenna case (MISO interference
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channel),analyze the complexity of the corresponding utility
maximization problems, and propose a practical algorithm to
solve them.

In addition to the aforementioned utility based formulations,
various base station cooperation techniques have been pro-
posed to mitigate inter-cell interferences, including multi-point
coordinated transmission, or network multi-input multi-output
(MIMO) transmission [7–16]. For example, the distributed
or decentralized approaches are proposed for coordinated
transmitter beamforming vectors in MISO interference channel
in [7], [10], [13], [14], [16], [17], some of which are based
on dual uplink channels. In particular, a distributed pricing
algorithm for power control and beamformer design in the
MISO interference networks is proposed in [17]. At each
iteration, transmitters try to maximize their utility minus the
total interference cost, i.e., the summation of the interference
price times the received interference, and the interference price
indicates the marginal decrease in the corresponding user’s
utility due to a marginal increase in interference associated
with the particular receiver.

The references [11], [12] show that coordination enables
the cellular network to enjoy a greater spectral efficiency.
Most of these cooperative techniques require each base station
to have not only full/partial CSI but also the knowledge of
actual independent data streams to all remote terminals. With
the complete sharing of data streams and CSI, the multi-cell
scenario is effectively reduced to a single cell interference
management problem with either total [18] or per-group-of-
antenna power constraints [19], [20]. Among the major draw-
backs of these techniques (in comparison to the utility based
approaches) are their stringent requirement on base station co-
ordination, the large demand on the communication bandwidth
of backhaul links, as well as the heavy computational load
associated with the increasing number of cells [21], [22]. The
references [8], [15], [23], [24] provided characterizations of
the achievable rate region and proved the existence of a unique
Nash equilibrium which is inefficient in the sense that the
achievable rates are bounded by a constant, regardless of the
available transmit power. See [23], [25] for the recent results
of the MISO channel.

Notation: The notation for this paper is as follows: Lower
case boldface is used for column vectors.(·)T and(·)† denote
transpose and Hermitian transpose.(x, y) denotes a two-
dimensional row vector.‖ · ‖ denotes the Euclidean norm. As-
sumingf(x) is a multi-variable function,∇f(x) and∇2f(x)
denote its gradient and Hessian, respectively.

II. PROBLEM FORMULATION

Consider a cellular system in which there areK base
stations each equipped withL transmit antennas. TheK base
stations wish to transmit respectively toK mobile receivers
each having only a single antenna. Each base station can direct
a beam to its intended receiver in such a way that the resulting
interference to the other mobile units is small. Consider the
single carrier case, and lethjk ∈ CL denoteL-dimensional
complex channel vector between base stationj and receiver
k. Let vk ∈ CL denote the beamforming vector used by

base stationk, while sk is a complex scalar denoting the
information signal for userk with E|sk|2 = 1. The transmitter
vector of thej-th base station isvjsj . Then the signal received
by userk can be described as

yk =
K∑

j=1

h†jk (vjsj) + zk, 1 ≤ k ≤ K, (1)

wherezk is the additive white Gaussian noise (AWGN) with
varianceσ2

k/2 per real dimension. Treating interference as
noise, we can write the SINR of each user as

SINRk =
|h†kkvk|2

σ2
k +

∑
j 6=k |h†jkvj |2

. (2)

Adopting an utility, we can formulate the optimal coordinated
downlink beamforming problem as

max H(r1, r2, ..., rK)

s.t. rk = log

(
1 +

|h†kkvk|2
σ2

k +
∑

j 6=k |h†jkvj |2

)
,

‖vk‖2 ≤ Pk, 1 ≤ k ≤ K,

(3)

wherePk denotes the power budget of base stationk, andH(·)
denotes the system utility which may be any of the following

• Weighted sum-rate utility:H1 =
1
K

K∑

k=1

wkrk, with

weight wk ≥ 0.

• Proportional fairness utility:H2 =

(
K∏

k=1

rk

)1/K

⇔

1
K

K∑

k=1

log rk.

• Harmonicmean utility:H3 = K/

(
K∑

k=1

r−1
k

)
.

• Min-rate utility: H4 = min
1≤k≤K

rk.

According to [23], [24], problem (3) can be written in a more
general form

max H(r1, r2, ..., rK)

s.t. rk = log

(
1 +

h†kkVkhkk

σ2
k +

∑
j 6=k h†jkVjhjk

)
,

Trace(Vk) ≤ Pk, Vk < 0, 1 ≤ k ≤ K,

(4)

whereVk is the transmit covariance matrix at transmitterk.
The results in [23], [24] state that problem (4) has a rank-one
optimal solution for eachVk. This implies that problem (3)
and problem (4) are equivalent. We focus on formulation (3)
in this paper.

The above beamforming problem (3) can be nonconvex
in general due to the nonlinear equality constraints. Given
nonnegative weights(w1, w2, ..., wK), the optimal tuple of
rates (r1, r2, ..., rK) of (3) should lie on the boundary of
the achievable rate region. See [8], [9], [15], [23], [24] for
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various effort to characterize the achievable rate region of the
interference channel.

In practice, the choice of utilities depends on a suitable com-
promise between system performance (total rates achievable)
and user fairness. The sum-rate utilityH1 focuses entirely
on system performance, while the min-rate utilityH4 places
the highest emphasis on user fairness. The other two choices
H2 andH3 represent an appropriate tradeoff between the two
extremes.

III. C OMPLEXITY ANALYSIS

In this section, we investigate the complexity status of the
optimal coordinated downlink beamforming problem (3) under
various choices of system utilities. We provide a complete
analysis on when the problem is NP-hard and also identify
subclasses of the problem that are solvable in polynomial time.

A. Computational complexity theory: a brief background

Generically, an optimization problem can be described by
the minimization of an objective function over a feasible
region. A decision version of the minimization problem is
to decide if the feasible region contains a vector at which
the objective function value is below a given threshold. The
answer to the decision problem is binary, true or false, and
there is no need to identify what the solution is. The decision
version is typically easier to solve than the original optimiza-
tion problem which requires the determination of an (globally)
optimal solution. The size of an optimization problem instance
is defined as the minimum length of a binary string required to
describe the objective function and the feasible region. We say
an algorithm solves the decision version of an optimization
problem if for each instance of the problem, the algorithm
correctly gives “true” or “false” answer. We can define the
running time of an algorithm as the maximum number of basic
computational steps (e.g., number of arithmetic operations)
required to solve the decision version of an optimization
problem of a given size. Typically, the algorithm’s running
time is a function of the problem size.

In the computational complexity theory [26], [30], there are
two important classes of optimization problems, P and NP. The
class P contains optimization problems which are solvable (or
decidable) by an algorithm whose running time grows at most
as a polynomial function of the input size. It turns out that the
class P is rather robust to the actual definition of input size.
For example, P is invariant if we alternatively define the input
size of an optimization problem as the sum of the problem
dimension, the number of constraints and the binary length
of the input data and threshold value. We say an algorithm
is a pseudo polynomial time algorithm if its running time
is a polynomial when we bound the size of numbers in the
input by a constant. For example, many dynamic programming
algorithms (e.g., Viterbi algorithm) are pseudo polynomial
time since their state space are typically exponential if the
numbers in the input are not bounded.

The class NP, which stands forNondeterministic Polynomial
time, consists of decision version of optimization problems
whose “true” instances can be verified in polynomial time,

assuming the availability of a feasible solution that meets
the threshold requirement. More formally, we say a nondeter-
ministic algorithm solves a decision version of optimization
problem if we can verify each “true” instance of the problem
using a sequence of nondeterministic steps (i.e., involving
random guesses). If the number of nondeterministic steps is
polynomial, then the algorithm is said to have a nondetermin-
istic polynomial running time. For example, for any symmetric
matrix Q ∈ Rn×n and a threshold valueL, consider the prob-
lem of deciding if there exists a binary vectorx ∈ {−1, 1}n

such thatxT Qx ≤ L. A nondeterministic algorithm to solve
this problem is to guess a binary vectorx and then check
if xT Qx ≤ L indeed holds. Such a binary vectorx exists
for all “true” instances of the problem, and the verification
process requires polynomially many steps although some steps
may involve a random guess (of a component ofx). In this
case, the problem is solvable in nondeterministic polynomial
time. The class NP contains precisely those decision version
of optimization problems that are solvable in nondeterministic
polynomial time. Clearly, P is contained in NP. It is widely
conjectured that P6= NP, or equivalently, there are problems in
NP which are not solvable in (deterministic) polynomial time.

A subset of problems in NP are called NP-complete. NP-
complete problems are those in NP which are most difficult
to solve, in the sense that if any one of them is in P, so is
every other problem in NP. There are many well known NP-
complete problems such as the traveling salesman problem,
the 3-colorability problem, and so on. The latter problem is
to decide if the nodes of a given graph can be colored in
three colors so that each adjacent pair of nodes are colored
differently. The 3-colorability problem is clearly in NP since
we can easily check if a guessed coloring scheme meets the
requirement. There is no known polynomial time algorithm
to solve the 3-colorability problem. In fact, if this problem is
solvable in polynomial time (i.e., in P), then every problem in
NP is solvable in polynomial time, or equivalently P = NP. A
problemP is said to be NP-hard if it is at least as hard as those
NP-complete problems, which means that the polynomial time
solvability of P would imply every NP-complete problem is
in P. A NP-hard problem may not be in NP. For example, the
binary quadratic minimization problemminx∈{−1,1}n xT Qx
is NP-hard, since it is not known to be in NP, and is at least as
hard as the NP-complete problem of deciding if there exists
a binary vectorx such thatxT Qx ≤ L, where the threshold
value L is given. A problem is called strongly NP-hard if
it cannot be solved by a pseudo polynomial time algorithm
unless P = NP.

To prove a problemP is NP-complete, we need to show
two things. First, we verify the problem is in NP. This step is
usually easy. Second, we need to showP is at least as difficult
as a known NP-complete problem. This can be accomplished
by a standard technique called polynomial time transformation.
In a polynomial time transformation, we pick a known NP-
complete problem and show that it is equivalent to a special
case ofP. More precisely, we take an arbitrary instance of
a known NP-complete problem, construct a special instance
(with polynomial size) ofP, and then establish the equivalence
of the two instances. To show a problem is NP-hard, we simply
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ignorestep 1, as there is no need to showP is in NP. To show
P is strongly NP-hard, we need to additionally ensure the
special instance ofP we construct involves only numbers of
constant size, i.e., numbers whose combined bit length does
not increase with the problem dimension or the number of
constraints.

B. Maximization of the Weighted Sum-Rate Utility

Consider the system utilityH1 =
1
K

K∑

k=1

wkrk. In the single

antenna case (L = 1), the original system optimization prob-
lem (3) becomes the following (5), wherexk = ‖vk‖2, αjk =
‖hjk‖2/‖hkk‖2 andγk = σ2

k/‖hkk‖2. Problem (5) is known
to be NP-hard [1] even when the weightswk are all equal, and
the proof is based on a polynomial time transformation from
the maximum independent set problem (which is known to
be NP-complete). Thus, the general case ofL ≥ 1 is also
NP-hard. For various special MISO channels, the sum-rate
maximization problem can still be solved in polynomial time,
see [25], [27–29].

C. Maximization of the Harmonic Mean Utility

We now study the complexity status of the optimal coor-
dinated downlink beamforming problem (3) defined by the
harmonic mean rate utility.

Theorem 3.1 (Harmonic Mean Utility):For the harmonic

mean utility H3 = K/

(
K∑

k=1

r−1
k

)
, the optimal coordinated

downlink beamforming problem can be transformed into a
convex optimization problem whenL = 1, but is NP-hard
whenL ≥ 2.

When there is only one transmit antenna (L= 1), the
reference [1] shows that the harmonic mean rate maximization
can be transformed into an equivalent convex problem. We
thus focus on the caseL ≥ 2. Notice that the harmonic mean
utility maximization problem is a continuous optimization
problem. To show its NP-hardness, we need to transform
a known NP-hard discrete problem to the harmonic mean
maximization problem. To facilitate this transformation, it is
necessary to induce certain discrete structure to the optimal
solutions to the harmonic mean maximization problem. This
is accomplished by using the concavity of the harmonic
mean utility with respect to each beamforming vectorvk. In
particular, Lemma 3.2 (proved in Appendix I) shows that we
can constrain the optimal beamforming vectors to be taken
from two orthogonal vectorsha or hb.

The NP-hardness proof of Theorem 3.1 is based on a
transformation from a variant of the 3-SAT [30] problem.
To describe this variant, we need to define the UNANIMITY
property and the NAE (stands for “not-all-equal”) property of
a disjunctive clause1.

Definition 3.1: For a given truth assignment to a set of
Boolean variables, a disjunctive clause is said to beUNANI-
MOUSif all literals in the clause have the same value (whether

1Recall that for a given set of Boolean variables, a literal is defined as
either a Boolean variable or its negation, while a disjunctive clause refers to
a logical expression consisting of the logical “OR” of literals.

it is the True or the False value). Otherwise it is said to be
satisfied in theNAE (Not-All-Equal) sense.
Notice that a disjunctive clause must be satisfied if it is to have
the NAE property. We now define somedecision problems
over Boolean variables.

Definition 3.2: MAX-UNANIMITY problem: given a pos-
itive integer M and m disjunctive clauses defined overn
Boolean variables, we ask whether there exists a truth assign-
ment such that the number ofunanimousdisjunctive clauses is
at leastM . When the number of literals in each clause is two,
we denote the corresponding problem asMAX-2UNANIMITY
problem.When each clause contains three literals, the problem
of determining whether there exists a truth assignment under
which at leastM clauses are satisfied in the NAE sense is
called theNAE-SAT problem.

The NAE-SAT problem is known to be NP-complete [30].
Our next lemma says that the MAX-2UNANIMITY problem
is also NP-complete.

Lemma 3.1:The MAX-2UNANIMITY problem is NP-
complete.

Proof: We construct a polynomial time transformation
from the NAE-SAT problem. It can be checked that the MAX-
2UNANIMITY problem is in the class NP. Given a disjunctive
clause with three literals,c = x ∨ y ∨ z, let us construct the
following six clauses, each involving only two literals:

R(c) : x ∨ ȳ, x ∨ z̄, y ∨ x̄, y ∨ z̄, z ∨ x̄, z ∨ ȳ. (6)

It can be checked thatR(c) has the following properties:

1) The number of unanimous clauses (i.e., all literals hav-
ing the same value) inR(c) is at most four.

2) The clausec is satisfied in the NAE sense if and only
if the number ofunanimousclauses inR(c) is four.

Now given any instanceφ of NAE-SAT problem, we con-
struct a corresponding instanceR(φ) of MAX-2UNANIMITY
problem as follows: for each clausec = α ∨ β ∨ γ of φ, we
add to R(φ) the six clauses in (6), withx, y, z replaced
with the literalsα, β, γ respectively. In this way, ifφ has
m clauses, thenR(φ) will have 6m clauses. LetM = 4m.
Then properties 1 and 2 imply that all clauses inφ are
simultaneously satisfiable in the NAE sense if and only if at
leastM = 4m clauses inR(φ) can be madeunanimous. In
particular, suppose that4m clauses inR(φ) are unanimous
under a given truth assignment. Since, by property1, each
group R(c) of six clauses can have at most four unanimous
clauses, it follows that exactly four clauses must be unanimous
in each group. By property 2, this further implies that each
clause inφ is satisfied in NAE sense. Conversely, any truth
assignment that satisfies a clausec in the NAE sense will give
rise to four unanimous clauses. Thus, if allm clauses inφ are
satisfied in the NAE sense, then there will be4m unanimous
clauses inR(φ). Finally, this transformation is in polynomial
time.

An immediate corollary of Lemma 3.1 is that the MAX-
UNANIMITY problem is NP-complete. However, if we ask
whetherall of the m clauses (i.e.,M = m) can be made
unanimous, then the corresponding MAX-UNANIMITY prob-
lem, simply called UNANIMITY problem, can be solved in
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max
K∑

k=1

wkrk, subjectto rk = log

(
1 +

xk

γk +
∑

j 6=k αjkxj

)
, 0 ≤ xk ≤ Pk, 1 ≤ k ≤ K, (5)

polynomial time (using a tree search technique). Also, notice
that a disjunctive clause isunanimousunder a given truth
assignment if and only ifc is not satisfied inNAE sense. This
implies that MIN-3UNANIMITY problem is NP-complete.
Since these results are not needed in the subsequent analysis,
we state them without proof.

Proposition 3.1:The following is true:

1) MAX-UNANIMITY problem is NP-complete.
2) MIN-3UNANIMITY problem is NP-complete.
3) UNANIMITY problem is solvable in polynomial time.
We are now ready to prove Theorem 3.1. Proof: Let

the utility in (3) be given by the harmonic mean functionH3.
Consider an instance of MAX-2UNANIMITY problemφ with
clausesc1, c2, ..., cm defined over the variablesx1, x2, ..., xn

and an integerM . Let ha = (1, 0)T , hb = (0, 1)T and
h = (

√
N, 0)T , whereN is a large positive number (to be

specified later). We write each clausecj = αj∨βj , with αj , βj

taken from{x1, x2, ..., xn, x̄1, x̄2, ..., x̄n}. Let us define two
mappings

π, τ : {1, 2, ...,m} 7→ {±1,±2, ...,±n}
such that

π(j) =
{

i, if αj = xi,
−i, if αj = x̄i,

andτ(j) =
{

i, if βj = xi,
−i, if βj = x̄i.

For instance, ifc4 = x3∨ x̄5, then we haveα4 = x3, β4 = x̄5,
with π(4) = 3 and τ(4) = −5. For i = ±1,±2, ...,±n, we
define

hi =
{

ha, if i > 0,
hb, if i < 0.

Given an instance of MAX-2UNANIMITY problem, we con-
struct the following (7) as an instance of (3) (the inverse
of harmonic mean utility minimization is equivalent to the
harmonic mean rate utility maximization) with a total of
K = 4n + 2m users. Herein, each Boolean variablexi corre-
sponds to four users, including user4i (called “variable user”)
and user4i− 1, 4i− 2 and4i− 3 (called “auxiliary variable
users”); while each clausecj corresponds to a pair of users,
i.e., user4n + 2j and 4n + 2j − 1 (called “clause users”).
In our construction (7), each (variable, auxiliary variable or
clause) userk is associated with a transmitter beamforming
vectorvk, k = 1, 2, ..., 4n + 2m.

In (7), the n “variable users” communicate interference
free. Their channel vectors are(

√
0.9,

√
0.9)T and their

noise power are1. The 3n “auxiliary variable users”
4i− 1, 4i− 2, 4i− 3, i = 1, 2, ..., n, do suffer from crosstalk
interference from the “variable user”4i. That is, the
interference channel vectors from the “variable user”4i are
(1, 1)T , (1, 0)T , (0, 1)T , respectively; the direct link channel
vectors are(1, 0)T , (10, 0)T and (10, 0)T ; the self noise
power at each “auxiliary variable user” is zero. For the
“clause users”4n + 2j and4n + 2j − 1, j = 1, 2, ..., m, their

channel vectors areh = (
√

N, 0)T and their noise powers are
1. Let v4i, i = 1, 2, ..., n, denote the transmit beamforming
vector of the “variable user”4i. For example, the clause
c1 = x2 ∨ x̄3 corresponds toj = 1 and is associated with two
“clause users” which are denoted by4n + 1, 4n + 2. Since
π(1) = 2 and τ(1) = −3, the two users4n + 1 and 4n + 2
experience interferences from “variable users”4|π(1)| = 8
and 4|τ(1)| = 12. The corresponding interference terms for
these two “clause users”4n+1, 4n+2 are|h†av8|2+ |h†bv12|2
and |h†bv8|2 + |h†av12|2, respectively.

The correspondence between MAX-2UNANIMITY prob-
lem and the optimal coordinated downlink beamforming prob-
lem (7) is listed in Table I. Notice thatr4n+2j can be obtained
from clausecj according to Table I andr4n+2j−1 can be
obtained fromr4n+2j by swappingha with hb.

TABLE I

VARIABLE CORRESPONDENCE

MAX-2UNANIMITY Problem (7)
variablexi beamforming vectorv4i

clausecj ratesr4n+2j andr4n+2j−1

literal xi interference term|h†av4i|2
literal x̄i interference term|h†bv4i|2

We first fix some easy variables of (7) to simplify the
problem. Since each of the beamforming vectorsv4n+2j ,
v4n+2j−1, j = 1, 2, ..., m, and v4i−l, i = 1, 2, ..., n, l =
1, 2, 3, appears exactly once in the objective function, it
follows that, by optimality, these beamforming vectors must
be matched to the corresponding channel vectors. That is,
v∗4n+2j = v∗4n+2j−1 = (1, 0)T , and v∗4i−1 = v∗4i−2 =
v∗4i−3 = (1, 0)T . Substituting these optimal beamforming
vectors into (7) yields (8). It only remains to determine the
optimal beamforming vectorsv∗4i, i = 1, 2, ..., n. For this
purpose, we need the following key lemma whose proof is
relegated to Appendix I.

Lemma 3.2:If N ≥ 2(e40m − 1), then the optimal beam-
forming vectors{v∗4i} for the optimization problem (8) must
be eitherha = (1, 0)T or hb = (0, 1)T .

It follows from Lemma 3.2 that the optimal beamforming
vectorv∗4i of (8) is eitherha or hb. In either case, the sum of
inverse rates

1
r4i

+
1

r4i−1
+

1
r4i−2

+
1

r4i−3
=

1
log 1.9

+
1

log 101
+

1
log 2

, C

is a constantC. Thus, regardless of whetherv∗4i = ha or
hb, the first sum in the objective function of (8) remains
unchanged and equalsnC. Thus, we only need to consider
the second sum in the objective function of (8). Notice that
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min
n∑

i=1

(
1

r4i
+

1
r4i−1

+
1

r4i−2
+

1
r4i−3

)
+

m∑

j=1

(
1

r4n+2j
+

1
r4n+2j−1

)

s.t. r4i = log
(
1 + |(

√
0.9,

√
0.9)v4i|2

)
,

r4i−1 = log
(

1 +
|(1, 0)v4i−1|2
|(1, 1)v4i|2

)
,

r4i−2 = log
(

1 +
|(10, 0)v4i−2|2
|(1, 0)v4i|2

)
,

r4i−3 = log
(

1 +
|(10, 0)v4i−3|2
|(0, 1)v4i|2

)
,

r4n+2j = log

(
1 +

|h†v4n+2j |2
1 + |h†π(j)v4|π(j)||2 + |h†τ(j)v4|τ(j)||2

)
,

r4n+2j−1 = log

(
1 +

|h†v4n+2j−1|2
1 + |h†−π(j)v4|π(j)||2 + |h†−τ(j)v4|τ(j)||2

)
,

‖vk‖2 ≤ 1, 1 ≤ i ≤ n, 1 ≤ j ≤ m, 1 ≤ k ≤ 4n + 2m.

(7)

min
n∑

i=1

(
1

r4i
+

1
r4i−1

+
1

r4i−2
+

1
r4i−3

)
+

m∑

j=1

(
1

r4n+2j
+

1
r4n+2j−1

)

s.t. r4i = log
(
1 + 0.9|(1, 1)v4i|2

)
,

r4i−1 = log
(
1 + 1/|(1, 1)v4i|2

)
,

r4i−2 = log
(
1 + 100/|(1, 0)v4i|2

)
,

r4i−3 = log
(
1 + 100/|(0, 1)v4i|2

)
,

r4n+2j = log
(
1 + N/

(
1 + |h†π(j)v4|π(j)||2 + |h†τ(j)v4|τ(j)||2

))
,

r4n+2j−1 = log
(
1 + N/

(
1 + |h†−π(j)v4|π(j)||2 + |h†−τ(j)v4|τ(j)||2

))
,

‖v4i‖2 ≤ 1, 1 ≤ i ≤ n, 1 ≤ j ≤ m.

(8)

1
r4n+2j

+
1

r4n+2j−1
=





1
log (1 + N/3)

+
1

log (1 + N/1)
, if cj is unanimous,

1
log (1 + N/2)

+
1

log (1 + N/2)
, if cj is not unanimous.

the value of each term in the second sum only depends on
whether clausecj is unanimous (see the second equation in
the next page). Since

1
log (1 + N/3)

+
1

log (1 + N)
<

2
log (1 + N/2)

from Claim 1 in Appendix I, it follows that second sum
of (8) will be smaller if more clauses are satisfied unani-
mously. Therefore, the minimum of (8) is only related to the
maximum number of unanimous clauses in the given MAX-
2UNANIMITY problem. Specifically, the minimum of (8) is
no more than

nC +
M

log (1 + N/3)
+

M

log (1 + N)
+

2(m−M)
log (1 + N/2)

(9)

if and only if there exists an appropriate truth assignment such
that at leastM clauses are made unanimous for the given
MAX-2UNANIMITY problem. Thus, we have transformed the
problem of MAX-2UNANIMITY problem to the problem of
checking if problem (7) will have an optimal value below the
above threshold (9).

Finally, given an instance of the MAX-2UNANIMITY
problem, we can construct the harmonic mean rate maxi-
mization problem (7) in polynomial time. Since the MAX-
2UNANIMITY problem is NP-complete (Lemma 3.1), it fol-
lows that the optimal coordinated beamforming problem (3)
with harmonic mean utility is NP-hard.

A few remarks are in order. First, it follows from the proof
of Theorem 3.1 that even if the optimal transmit power levels
are known (i.e.,‖vk‖2 ≤ Pk is replaced with‖vk‖2 = Pk),
the problem of finding the optimal beamforming directions of
harmonic mean rate maximization problem is still NP-hard.
Second, we have set the noise powers of users4i − 1, 4i −
2, 4i− 3, i = 1, 2, ..., n, to zero in (7). These settings simplify
the proof and do not reduce any generality. We could have
used small noise power values in the proof (even though
some extra argument is needed), since there is a positive
gap between the global optimal value and the local optimal
values of (7). Finally , our proof actually implies that there
is a positiveprobability (measure) that a randomly generated
MISO coordinated beamforming problem under the harmonic
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meanutility is NP-hard to solve. In particular, by continuity, all
slightly perturbed versions of the constructed instance (7) (i.e.,
channel vectors, noise/transmit powers are slightly changed)
will be equivalent to the MAX-2UNANIMITY problem. This
is because there is a positive (and constant) jump in the global
optimal value of the constructed example when the optimal
value of the corresponding MAX-2UNANIMITY problem
increases by one. When channel conditions change slightly,
this one-to-one correspondence between the optimal values of
the two problems and the property of the discrete jump in the
optimal value of the constructed MISO problem remain valid.

D. Maximization of Proportional Fairness Utility

Like the harmonic mean utility, we have the following
hardness result.

Theorem 3.2 (Proportional Fairness Utility):For the pro-

portional fairness utilityH2 =

(
K∏

k=1

rk

)1/K

, the optimal co-

ordinated downlink beamforming problem can be transformed
into a convex optimization problem whenL = 1, but is NP-
hard whenL ≥ 2.

Proof: The first part of Theorem 3.2 is proved in [1]. For
the second part, the argument is similar to that of Theorem 3.1.
We only give a proof outline below.

First, we have the following lemma whose proof is provided
in Appendix II.

Lemma 3.3:The functionf(x) = log log
(

1 +
1

σ2 + x

)

is strictly convex inx ≥ 0 for any σ.
Second, given any MAX-2UNANIMITY problem, an in-

stance (10) of the optimal coordinated downlink beamforming
problem (3) with utility log H2 (equivalent to proportional
fairness utility maximization) and3n + 2m users is con-
structed as follows. Notice that each global optimal solution
of (10) must havev∗3i−1 = v∗3i−2 = (1, 0)T , i = 1, 2, ..., n,
andv∗3n+2j = v∗3n+2j−1 = (1, 0)T , j = 1, 2, ..., m. Moreover,
we consider the following parametric optimization problem
(similar to (19) in the harmonic mean case):

max log r3 + log r2 + log r1

s.t. r3 = log
(
1 + |(

√
0.1,

√
0.1)v3|2

)
,

r2 = log
(
1 + 1/(σ2 + |(1, 0)v3|2)

)
,

r1 = log
(
1 + 1/(σ2 + |(0, 1)v3|2)

)
,

‖v3‖ = t,

(11)

whereσ > 0 is a constant andt is a parameter. The global
maxima of (11) should be(t, 0)T and (0, t)T when σ is
small. Furthermore, the optimum value of (11) is an increasing
function with respect tot ∈ [0, 1]. Using an argument similar
to that of the harmonic mean case for (8), each globally
optimal beamforming solutionv∗3i of (10) should be either
ha or hb whenN ≥ 3(e6m− 1). When restricted to solutions
of the form v∗3i = ha or hb, the maximum of (10) is only
linearly related to the maximum number of unanimous clauses
in the given MAX-2UNANIMITY problem. Thus, maximizing
the number of unanimous clauses is the same as solving
(10). Since MAX-2UNANIMITY problem is NP-complete

(Lemma 3.1), it follows that the optimal coordinated downlink
beamforming problem with utilityH2 is also NP-hard.

E. Maximization of Min-Rate Utility

Let the system utility function be given byH = H4. In
this case, the problem can be solved in polynomial time for
arbitraryL andK [1], [2]. Specifically, letting

r = min
1≤k≤K

{rk},

the min-rate utility maximization problem becomes

max r

s.t. r ≤ log

(
1 +

|h†kkvk|2
σ2

k +
∑

j 6=k |h†jkvj |2

)
,

‖vk‖2 ≤ Pk, 1 ≤ k ≤ K.

(12)

Given a r ≥ 0, we can efficiently check if there exists
vk, k = 1, 2, ..., K, such that the constraints in (12) are
satisfied. This feasibility problem is a second order cone
programming, which can be solved efficiently using interior-
point methods. The following theorem is a generalization of
the result of [2], which deals with the single-cell case.

Theorem 3.3 (Min-Rate Utility):For the min-rate utility,
the optimal coordinated downlink beamforming problem can
be solved in polynomial time with arbitraryK andL.

Proof: We give the following bisection algorithm for
solving (12).

A Polynomial Time Algorithm for Min-Rate
Utility Maximization

Step 1. Initialization: Chooser` and ru such that the
optimal ropt lies in [r`, ru] and a toleranceε.

Step 2. If ru − r` ≤ ε, stop, else go toStep 3.
Step 3. Let rmid = (r` + ru)/2 and solve an SOCP

problem to check the feasibility problem of (12)
with r = rmid. If feasible, letr` = rmid, else set
ru = rmid and go toStep 2.

According to standard analysis of path-following interior-
point methods,Step 3 can be finished inO(K3.5L3.5) time.
With regards to initial choices forr` andru, we can letv̄k =
hkk

√
Pk/‖hkk‖ (space matched beamformer) and

r` = min
k

log

(
1 +

|h†kkv̄k|2
σ2

k +
∑

j 6=k |h†jkv̄j |2

)
,

ru = min
k

log

(
1 +

|h†kkv̄k|2
σ2

k

)
.

It takes log2 ((ru − r`) /ε) iterations to reach tolerance
ε. Thus, a total ofO(K3.5L3.5 log2 ((ru − r`) /ε)) arithmetic
operations are needed in the worst case. Since

ru − r` ≤ log(1 + Pk‖hkk‖2/σ2
k) ≤ Pk‖hkk‖2/σ2

k,

the second equation in the next page holds true, which is a
polynomial in the length of input data (all the channel vectors
hkj , noise powerσ2

k and power upper boundPk). Thus, the
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max
n∑

i=1

(log r3i + log r3i−1 + log r3i−2) +
m∑

j=1

(log r3n+2j + log r3n+2j−1)

s.t. r3i = log
(
1 + |(

√
0.1,

√
0.1)v3i|2

)
,

r3i−1 = log
(

1 +
|(1, 0)v3i−1|2
|(1, 0)v3i|2

)
,

r3i−2 = log
(

1 +
|(1, 0)v3i−2|2
|(0, 1)v3i|2

)
,

r3n+2j = log

(
1 +

|h†v3n+2j |2
1 + |h†π(j)v4|π(j)||2 + |h†τ(j)v4|τ(j)||2

)
,

r3n+2j−1 = log

(
1 +

|h†v3n+2j−1|2
1 + |h†−π(j)v4|π(j)||2 + |h†−τ(j)v4|τ(j)||2

)
,

‖vk‖2 ≤ 1, 1 ≤ i ≤ n, 1 ≤ j ≤ m, 1 ≤ k ≤ 3n + 2m.

(10)

K3.5L3.5 log2 ((ru − r`) /ε) ≤ K3.5L3.5 (| log2 Pk|+ 2| log2 ‖hkk‖|+ 2| log2 σk|+ | log2 ε|) ,

above algorithm has a polynomial time worst case complexity.

Remark: The algorithm described herein easily extend
to the weighted min-rate maximization problems. In [28],
the weighted min-rate problem is related to the weighted
sum MSE minimization problem and the weighted sum-rate
maximization problems through the nonnegative matrix theory.

Table II summarizes the complexity status of the optimal
coordinated downlink beamforming problem (3) for different
choices of utilities.

IV. A C YCLIC DESCENTALGORITHM

In this section, we consider numerical algorithms for the
coordinated beamforming problem (3) with harmonic mean
utility H3:

min ρ(v1,v2, ...,vK)

s.t. ‖vk‖2 ≤ Pk, 1 ≤ k ≤ K,
(13)

where

ρ(v1,v2, ...,vK) =
K∑

k=1

1
rk

,

rk = log

(
1 +

|h†kkvk|2
σ2

k +
∑

j 6=k |h†jkvj |2

)
.

Since this problem is NP-hard (proved in Section III), we
are led to develop efficient algorithms to find a high quality
approximate solution or a stationary point for (13). Due to
variableseparability in the constraints of (13) and our desire
for distributed implementation, we propose to solve (13) by
cyclicly adjusting the beamforming vectorvk while assuming
the beamforming vectors{vj : j 6= k} are fixed. In other
words, we solve a sequence of per-base station problems

min
vk

ρ(v1,v2, ...,vK)

s.t. ‖vk‖2 ≤ Pk.
(14)

Interestingly, the pricing algorithm introduced in [17] can be
viewed as a partially linearized version of our cyclic coordinate
descent algorithm. In particular, our proposed algorithm tries
to allocate resources of thek-th transmitter by maximizing
the summation of all users’ utility functions subject to its
power constraint (‖vk‖2 ≤ Pk); while the pricing algorithm
lets transmitterk maximize its own utility function plus the
summation of the first order approximation of all other users’
utility functions at the current pointIkj = |h†kjvk|2, where
Ikj denotes the interference at thej-th receiver from thek-th
transmitter.

A. An Inexact Cyclic Coordinate Descent Algorithm

The cyclic coordinate descent algorithm is also known as the
nonlinear Gauss-Seidel iteration [32]. There are several studies
of this type of algorithms [32–36] with many applications
in engineering [37]. However, most of these studies require
either the convexity of objective function or exact solution of
subproblems (14), which not only is costly but also may result
in algorithm divergence [33]. Below we consider a general
differentiable optimization problem with separable constraints

min f(x1,x2, ...,xK)
s.t. xk ∈ Xk, 1 ≤ k ≤ K,

(15)

where the feasible setX :=
∏K

k=1 Xk is separable, bounded
and closed. We propose an easily implementable cyclic co-
ordinate descent algorithm which simply requires a sufficient
decrease in the objective of (14) at each iteration. The algo-
rithm can be applied to solve the utility maximization problem
(3) with H = H1, H2 andH3 and have the same convergence
properties because they have smooth objective functions and a
separable feasible region. But the same can not be said about
H4 since it is non-differentiable.
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TABLE II

COMPLEXITY STATUS OF THE OPTIMAL COORDINATED DOWNLINK BEAMFORMING PROBLEM

XXXXXXXXClass
Utility

Weighted Sum-Rate ProportionalFairness HarmonicMean Min-Rate

L = 1, any K NP-hard[1] Convex [1] Convex [1] Poly. time Algorithm [1], [2]
L ≥ 2, any K NP-hard NP-hard NP-hard Poly. time Algorithm [1], [2]

An Inexact Cyclic Coordinate Descent Algorithm
Step 1. Initialization: choosex1 = [x1

1,x
1
2, ...,x

1
K ] and a

toleranceε > 0.
Step 2. Iteration i ≥ 1: Denote fork = 1, 2, ..., K,

zi+1
k =

(
xi+1

1 , ...,xi+1
k−1,x

i+1
k ,xi

k+1, ...,x
i
K

)
, (16)

and letzi+1
0 = xi.

For k = 1, 2, ..., K,

- Compute the gradient projection direction
for the componentxk according to

di+1
k = PXk

[xi
k−∇xk

f(zi+1
k−1)]−xi

k, (17)

wherePXk
[·] denotes the orthogonal projec-

tion to Xk.
- Determine a stepsizeαi+1

k using the back-
tracking line search technique [38].

- Updatexi+1
k = xi

k + αi+1
k di+1

k .

Let xi+1 = zi+1
K .

Step 3. Termination: If‖xi+1 − xi‖ ≤ ε, then stop. Else,
set i = i + 1 go to Step 2.

When specialized to the MISO downlink beamforming
problem, the above inexact cyclic optimization procedure can
be implemented in a distributed fashion. At the initial step,
each base station needs to know the local CSI for all channels
originating from that transmitter (either through feedback or
reverse-link estimation [31]). The only information to be
exchanged are the SINR terms atK receivers. In subsequent
iterations, a base station updates its beamforming vector by
solving (14) inexactly using a gradient projection algorithm.
After that, all receivers measure individual SINR terms and
send the SINR information to the next base station. The inexact
cyclic coordinate descent algorithm enables each transmitter
to update its beamformer with only limited information ex-
change.

The next result shows that the above Inexact Cyclic Coor-
dinate Descent Algorithm converges to a KKT point of (15).
The proof of this result is relegated to Appendix III.

Theorem 4.1:Supposef(x) is twice continuously differ-
entiable and bounded below, and the feasible setX :=∏K

k=1 Xk is convex, separable and compact. Then every
accumulation point of the sequence{xi} generated by the
inexact cyclic coordinate descent algorithm is a stationary
point of (15).

The separability of constraints is necessary for the algo-
rithm’s convergence. The following example (taken from [35])
shows that, without the separability, the algorithm can get

stuck at an uninteresting point:

min x2
1 + x2

2

s.t. x1 + x2 ≥ 2.

This strongly convex function has a unique global solution at
x∗1 = x∗2 = 1. However, if the initial point is(1.5, 0.5), the
cyclic coordinate descent algorithm will be stuck.

Specializing the inexact cyclic coordinate descent algorithm
to the coordinated beamforming problem (13), we need to per-
form a projected gradient descent iteration for the subproblem
(14). In this case, we have a ball constraintVk = {v | ‖v‖2 ≤
Pk} and the corresponding projection is straightforward

PVk
(v) =





v, if ‖v‖2 ≤ Pk,√
Pkv
‖v‖ , if ‖v‖2 > Pk.

(18)

As a variant, we can also use the so called Barzilai-Borwein
(BB) projection step for the subproblem (14) to replace the
standard gradient projection step. In particular, at iterationi,
the BB gradient projection directiondi

BB is given by




di
BB = PVk

(
vi

k − αi
BB∇vk

ρ(vi)
)− vi

k,

αi
BB =

‖si−1‖2
(si−1)T yi−1

,

wheresi−1 = vi
k−vi−1

k , yi−1 = ∇vk
ρ(vi)−∇vk

ρ(vi−1). It
can be shown that the above BB gradient projection direction
is always a descent direction. TheR-linear convergence of the
BB method has been established for strongly convex quadratic
functions in [39].

If we use a single gradient projection step to inexactly solve
the partially linearized subproblems in the pricing algorithm
[17], then the resulting inexact pricing algorithm is algorith-
mically identical to the inexact cyclic coordinate descent algo-
rithm considered herein. This is because the gradient vectors
of the two utility functions in the respective subproblems (i.e.,
ρ(v) and its partially linearized versions) are exactly the same.
This observation, coupled with Theorem 4.1, immediately
implies the convergence (to a KKT solution) of the inexact
pricing algorithm for MISO interference channel. The latter
is interesting since the convergence of the original pricing
algorithm has not yet been established.

V. NUMERICAL SIMULATIONS

To evaluate the effectiveness of the cyclic descent algorithm,
we have conducted numerical simulations for a7-cell network
with one user per cell as shown in Fig. 1. Each base station
is equipped withL antennas. Similar to [5], standard WiMax
parameters are used in all the simulations; see Table III, where
d is the distance in kilometers. The location of each remote
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TABLE III

STANDARD WIMAX PARAMETERS

Model or Parameters Values
noisepower spectral density −162 dBm/Hz

path loss model 128.1 + 37.6 log10(d)
log-normalshadowing 8 dB

distancebetween neighboring base stations 2.8km
antennagain 15 dBi
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Base Station
Remote User

Fig. 1. A wireless network with seven base stations and single user per cell.

user is chosen randomly within its cell such that it is at least
0.5km away from the corresponding base station.

Figure 2 plots the iteration process of BB projection method
for the coordinated downlink beamforming problem with
harmonic mean utility. It can be seen that most of improvement
is achieved in the first 1-2 iterations, making the method
attractive for practical implementations.

For a two-user MISO channel, a parametrization of the
achievable rate region boundary was given in [8], [24]. We
can use this parametrization to compute the global optimal
solution of the coordinated MISO downlink beamforming
problem by searching along the rate region boundary. In Fig. 3,
the performance of our proposed cyclic descent algorithm
is compared against the global optimum for 50 randomly
generated two-user MISO channel. It can be seen that the
proposed algorithm either achieves, or nearly achieves, the
global optimality.

Figure 4 shows the performance achieved by the cyclic
coordinate descent algorithm versus different number of an-
tennas for various utility functions and with a fixed transmit
power P = 30 dBm at each base station. Each point in
Fig. 4 is obtained by averaging over500 independent channel
realizations. Space matched beamformers are used as the
benchmark. It can be seen that the transmit rates improve
significantly over the benchmark solution. When the number
of users (K = 7) and the transmit power (P = 30 dBm) are
fixed, the utility increases linearly with the number of antennas
L, suggesting an additive system gain with increasingL.

1 2 3 4 5 6 7 8 9 10
0.5

0.6

0.7

0.8

0.9

1

1.1

Iteration

R
at

e 
[n

at
s/

se
c/

H
z]

 

 
Hamonic Mean Utility

Fig. 2. A typical iteration process of the cyclic coordinate descent algorithm
with K = 7, L = 4 andP = 30 dBm.
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Fig. 3. Performance comparison of the proposed algorithm and the
parametrization method withK = 2, P = 30 dBm.

VI. CONCLUSION

Coordinated transmit beamforming is a promising approach
for interference mitigation in a MISO interference channel. A
major design challenge is to find, for a given channel state,
a globally optimal beamforming strategy under an appropriate
utility criterion. In the single carrier case with a single antenna
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Fig. 4. Performance comparison of coordinated beamformers with space
matched beamformers withK = 7, P = 30 dBm.

per transmitter, maximizing the (weighted) sum-rate is known
to be NP-hard. However, the same problem is polynomial time
solvable when the proportional fairness, harmonic mean or
max-min utility is used. It turns out the situation with multiple
transmit antennas is rather different. For instance, when each
transmitter (e.g., a base station) is equipped with two antennas,
the corresponding joint beamformer design problem becomes
NP-hard under either the proportional fairness or the harmonic
mean criterion. These complexity results suggest that we
should abandon effort to find globally optimal beamformers
for a general MISO interference channel unless the max-min
utility is used. In the latter case the problem remains solvable
in polynomial time.

Motivated by these complexity results, we propose a simple
distributed inexact cyclic coordinate descent algorithm to
find a (locally optimal) beamforming strategy. Our algorithm
exploits the separable structure of the power constraints, and
is provably globally convergent to a KKT solution. This
algorithm requires only local CSI and an exchange of local
SINRs at each iteration. Numerical experiments with WiMax
system parameters show that the proposed algorithm is both
effective and efficient, providing significant rate gain over the
space matched beamforming strategy.
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APPENDIX I
PROOF OFLEMMA 3.2

The proof consists of establishing three claims.

Claim 1: The function log−1
(
1 +

(
σ2 + x

)−1
)

is strictly

concave inx ≥ 0 for any σ 6= 0. Furthermore,(1, 0)T

and (0, 1)T are the only global minima for the optimization
problem

min log−1

(
1 +

N

σ2 + x

)
+ log−1

(
1 +

N

σ2 + y

)

s.t. x + y = 1, x ≥ 0, y ≥ 0,

whereN > 0.

To establish Claim 1, we first show the strict concavity of
r(x) = log−1

(
1 +

(
σ2 + x

)−1
)

. Since

r′(x) =
r2(x)

(1 + σ2 + x) (σ2 + x)
,

r′′(x) =
2r2(x)

(
r(x)− (

1/2 + σ2 + x
))

(1 + σ2 + x)2 (σ2 + x)2
,

it follows that

r′′(x) < 0 ⇐⇒
g(x) = log

(
1 + 1/

(
σ2 + x

))− 1/
(
1/2 + σ2 + x

)
> 0.

Let z = 1/(σ2 + x) and considerh(z) = log(1 + z) −
2z/(2 + z). Since

h(0) = 0 and h′(z) =
z2

(1 + z)(z + 2)2
> 0, ∀ z > 0,

it follows that g(x) = h(z) > 0 for all x > 0, implying
the strict concavity ofr(x) over the interval(0,∞). Since
affine transformation does not change strict concavity of a
function, this implies thatlog−1

(
1 + N/

(
σ2 + x

))
is also

strictly concave forx ≥ 0. Finally, since the minimum of
a strictly concave function over a polytope is always attained
at a vertex [40], we have established the claim.

To establish Lemma 3.2, let us consider the following
parametric optimization problem inR2

min
1
r4

+
1
r3

+
1
r2

+
1
r1

s.t. r4 = log
(
1 + 0.9|(1, 1)v|2) ,

r3 = log
(
1 + 1/|(1, 1)v|2) ,

r2 = log
(
1 + 100/|(1, 0)v|2) ,

r1 = log
(
1 + 100/|(0, 1)v|2) ,

‖v‖ = t,

(19)

wherev = (v1, v2)T , andt ≥ 0 is a parameter.

Claim 2: Let f(t) denote the minimum value of (19). The
following properties hold:

1) f(t) is a strictly decreasing function in[0, 1],
2) Whent ∈ (0.95, 1], the global minima of (19) are(t, 0)T

and (0, t)T ,
3) f ′(t) is an increasing function in[0.95, 1].

Let us argue that Claim 2 is true. First, if part 2) is true,
then we can check part 3) directly by first computingf(t) as
the objective value of (19) at its optimal solutions(t, 0)T or
(0, t)T , and then verifying thatf ′′(t) > 0 for t ∈ [0.95, 1].
We omit the details of computation for space reason. So we
only need to argue parts 1) and 2).
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When t is fixed, the KKT condition for problem (19) can
be written as




φ(v1, v2) + ψ(v1) = λv1,
φ(v1, v2) + ψ(v2) = λv2,

v2
1 + v2

2 = t2,
(20)

where φ(x, y) and ψ(x) are given above andλ is the La-
grangian multiplier associated with the constraint‖v‖ = t in

(19). It can be seen that

√
2

2
(t, t)T is always a solution to (20).

Moreover,(t, 0)T and(0, t)T are the (only) non-differentiable
points of (19). Suppose(v̄1(t), v̄2(t))T , wherev̄1(t) 6= v̄2(t),
are other KKT solutions to (20) (if there are any). Notice that
the global minimumf(t) is always attained at a KKT point
or at a non-differentiable point of (19). Thus, we must have

f(t) = min
{A,B,C}

{fA(t), fB(t), fC(t)},

wherefA(t) and fB(t) are given in the following page and
fC(t) is the objective value of (19) at(v̄1(t), v̄2(t))T .

Next, we claim thatf(t) is a decreasing function int ∈
[0, 1]. We prove this by examining the monotonicity of the
component functionsfA(t), fB(t) and fC(t). By (20), we
have

λ =
ψ(v̄1(t))− ψ(v̄2(t))

v̄1(t)− v̄2(t)
< 0,

where the last step follows from the fact thatψ(x) is a de-
creasing function forx ∈ [0, 1]. Therefore, we conclude from
the standard sensitivity analysis [38] of duality multipliers that
fC(t) decreases ast increases in[0, 1]. For t ∈ [0, 0.75], it
can be checked that all offi(t), i = A,B, C, are decreasing
functions. Thus,f(t) decreases monotonically in[0, 0.75].
For t ∈ (0.75, 0.85), the global minimizer of (19) is neither√

2
2

(t, t)T nor (t, 0)T or (0, t)T as we always can find a

point at which the objective function is smaller thanfA(t) and
fB(t). As a result,f(t) = fC(t) decreases int ∈ (0.75, 0.85).
For t ∈ [0.85, 1], we have knowfB(t) ≤ fA(t), so f(t) =
min{fB(t), fC(t)}. As both offB(t) andfC(t) are decreasing
functions int ∈ [0.85, 1], we knowf(t) decreases in[0.85, 1].
This completes the proof thatf(t) is monotonically decreasing
in [0, 1].

We next prove part 2) of Claim 2: namely fort ∈ [0.95, 1],
the minima of (19) are(t, 0)T and (0, t)T . We can use
v2 =

√
t2 − v2

1 to transform (19) into an unconstrained
univariate optimization problem, where−t ≤ v1 ≤ t.
The global minimizer (v1, v2)T of (19) should satisfy
that v1v2 ≥ 0, else we can find(v̄1, v̄2)T such that
v̄1 + v̄2 = v1 + v2, |v̄1| < |v1| and |v̄2| < |v2|, at which
objective would be lower. Thus, we only need to consider
the casev1v2 > 0. Due to the symmetry of (19), we only
consider the case0 ≤ v1 ≤

√
2t/2. It can be checked that for

any t ∈ [0.95, 1], the objective function of (19) increases as
v1 increases in[0,

√
2t/2]. Hence,(0, t)T and (t, 0)T are the

global minima for (19) witht ∈ [0.95, 1].

Claim 3: WhenN ≥ 2(e40m − 1), the global minimav∗4i of
(8) must have unit-norm‖v∗4i‖ = 1, i = 1, 2, ..., n.

By symmetry, we only need to prove‖v∗4‖ = 1. Let us
consider the following parametric optimization problem (21)
in v4 with the other variablesv4i, i = 2, 3, ..., n, fixed, andt
as a parameter. Letg(t) be the optimum value of (21) and let
g1(t), g2(t) denote respectively the values of

1
r1

+
1
r2

+
1
r3

+
1
r4

and
m∑

j=1

(
1

r4n+2j
+

1
r4n+2j−1

)

when evaluated at the global minima of (21). By definition,
f(t) ≤ g1(t) for all t ∈ [0, 1]. We claim thatf(t) = g1(t)
for t ∈ [0.95, 1]. To see this, we consider the optimization
problem (22). Define|h†av4|2 = x, then|h†bv4|2 = t2−x, and
the objective function of (22) is only dependent onx, while
its constraint‖v4‖ = t can be transformed to0 ≤ x ≤ t2.
Using Claim 1, we see that the objective function of (22) is
strictly concave inx. As a result, the globally optimalx can
only be attained at the end points of the constraint interval
[0, t2]. In other words, the global minimizer of (22) must be
either (t, 0)T or (0, t)T . Since the global minima of (19) are
also (t, 0)T and (0, t)T when t ∈ [0.95, 1], it follows that
the global minimizer of (21) is either(t, 0)T or (0, t)T , if
t ∈ [0.95, 1]. This implies thatf(t) = g1(t) in [0.95, 1].

Next, we prove that ifN ≥ 2(e40m − 1), theng(1) < g(t)
for t ∈ [0, 1). Due to the choice ofN , it can be checked that

f ′(1) +
2m

log2(1 + N/3)
≤ 0,

f(0.95) ≥ f(1) +
2m

log(1 + N/2)
.

Then, we have

1) For anyt ∈ [0.95, 1],

g′(t) = g′1(t) + g′2(t) = f ′(t) + g′2(t)
≤ f ′(1) + g′2(t)

< f ′(1) +
2m

log2(1 + N/3)
≤ 0.

The second equality is due to the factf(t) = g1(t) for
t ∈ [0.95, 1]. The first inequality holds sincef ′(t) is an
increasing function in[0.95, 1] (cf. part 3) of Claim 2),
while the second inequality follows from

g′2(t) <
2m

log2(1 + N/3)
, for all t ∈ [0.95, 1].

The non-positiveness ofg′(t) over t ∈ [0.95, 1] implies
g(t) > g(1), for t ∈ [0.95, 1).

2) For anyt ∈ [0, 0.95], we have

g(t) > g1(t) ≥ f(t)

≥ f(0.95) ≥ f(1) +
2m

log(1 + N/2)
≥ g1(1) + g2(t) = g(1),

where the third inequality holds becausef(t) is a strictly
decreasing function in[0, 1] (cf. part 1) of Claim 2) and
the last inequality is due to

2m

log(1 + N/2)
≥ g2(t), for all t ∈ [0, 1].
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φ(x, y) =
−1.8 (x + y)

log2
(
1 + 0.9 (x + y)2

) (
1 + 0.9 (x + y)2

) +
2

log2
(
1 + 1/ (x + y)2

)(
(x + y)2 + 1

)
(x + y)

,

ψ(x) =
200

log2 (1 + 100/x2) (100 + x2) x
,





fA(t) =
1

log (1 + 1.8t2)
+

1
log (1 + 0.5/t2)

+
2

log (1 + 200/t2)
,

fB(t) =
1

log (1 + 0.9t2)
+

1
log (1 + 1/t2)

+
1

log (1 + 100/t2)
,

min
v4

(
1
r4

+
1
r3

+
1
r2

+
1
r1

)
+

m∑

j=1

(
1

r4n+2j
+

1
r4n+2j−1

)

s.t. r4 = log
(
1 + 0.9|(1, 1)v4|2

)
,

r3 = log
(
1 + 1/|(1, 1)v4|2

)
,

r2 = log
(
1 + 100/|(1, 0)v4|2

)
,

r1 = log
(
1 + 100/|(0, 1)v4|2

)
,

‖v4‖ = t,

r4n+2j = log
(
1 + N/

(
1 + |h†π(j)v4|π(j)||2 + |h†τ(j)v4|τ(j)||2

))
,

r4n+2j−1 = log
(
1 + N/

(
1 + |h†−π(j)v4|π(j)||2 + |h†−τ(j)v4|τ(j)||2

))
,

1 ≤ j ≤ m.

(21)

min
v4

m∑

j=1

(
1

r4n+2j
+

1
r4n+2j−1

)

s.t. ‖v4‖ = t,

r4n+2j = log
(
1 + N/

(
1 + |h†π(j)v|4π(j)||2 + |h†τ(j)v|4τ(j)||2

))
,

r4n+2j−1 = log
(
1 + N/

(
1 + |h†−π(j)v4|π(j)||2 + |h†−τ(j)v4|τ(j)||2

))
,

1 ≤ j ≤ m.

(22)

Combiningthe above two steps showsg(t) > g(1) for all
t ∈ [0, 1). It follows that the minimum ofg(t) over [0, 1] is
attained att = 1. This establishes Claim 3.

Finally, notice that Claim 3 implies that problem (8) is
equivalent to problem (21) witht = 1, whenN ≥ 2(e40m−1).
Since the global optimal solution of (21) must be either(0, t)T

or (t, 0)T for t ∈ [0.95, 1], it follows that the optimal solutions
v∗4i, i = 1, 2, ..., K, for problem (8) should be either(1, 0)T

or (0, 1)T whenN ≥ 2(e40m − 1).

APPENDIX II
PROOF OFLEMMA 3.3

Proof: Let r(x) = log (1 + 1/(b + x)), then we have
f(x) = log r(x), and

r′(x) =
−1

(b + 1 + x)(b + x)
, f ′(x) =

r′(x)
r(x)

and

f ′′(x) =
(g(x)− 1)

(b + 1 + x)2(b + x)2r2(x)
,

whereg(x) = (2b+2x+1)r(x) andb = σ2 ≥ 0. Let y = x+b,
then g(x) becomesh(y) = (2y + 1) log(1 + 1/y). It suffices
to prove thath(y) ≥ 1 for all y ≥ 0. Since

h′(y) = 2 log
(

1 +
1
y

)
− (2y + 1)

y(y + 1)

and

h′′(y) =
1

y2(y + 1)2
> 0,

we know h′(y) is an increasing function. Since
limy→+∞ h′(y) = 0, it follows that h′(y) ≤ 0 and h(y) is a
decreasing function. Notice thatlimy→+∞ h(y) = 2. Thus,
we haveh(y) ≥ 2 > 1 for all y ≥ 0. This further implies that
log log (1 + 1/(b + x)) is strictly convex forx ≥ 0.

APPENDIX III
CONVERGENCE OF THECYCLIC COORDINATE DESCENT

ALGORITHM

We first need to estimate the step length.
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Claim 1: Supposec1 ∈ (0, 1), ∇h(yi)T di < 0 and
max
y∈Y

‖∇2h(y)‖ ≤ B, whereh(y) is a multi-variable function

associated withy and Y is the feasible region. Consider the
Armijo step length rule [38] wherebyαi := γ`, with γ ∈ (0, 1)
and` ≥ 0 being the smallest integer satisfying

h(yi + γ`di) ≤ h(yi) + c1γ
`∇h(yi)T di. (23)

Then we have

1 ≥ αi ≥ min
{

1,
2(c1 − 1)∇h(yi)T di

Bγ‖di‖2
}

, (24)

and

h(yi)− h(yi + αidi)

≥min

{
−c1∇h(yi)

T
di,

2c1(1− c1)
(∇h(xi)T di

)2

Bγ‖di‖2
}

.

(25)

Let us argue Claim 1 holds. Suppose that the step length
αi = 1 is not accepted. In this case,αi will be the largest step
satisfying the sufficient decrease condition (23), implying

h(yi + αiγ
−1di) > h(yi) + c1αiγ

−1∇h(yi)T di. (26)

By Taylor expansion, (27) in the next page holds true. Com-
bining (26) and (27) yields (24). Substituting (24) into the
sufficient decrease condition (23), we immediately obtain (25),
which establishes Claim 1.

We now proceed with the proof of Theorem 4.1. The basic
idea is based on the contradiction principle. More exactly, if
there is no convergence, we can find one descent direction
which can provide a sufficient descent in the objective function
value and then obtain a contradiction.

At first, since the iterates{xi} lie in a compact setX, there
must exist an accumulation point for{xi}. Let x̄ denote an
accumulation point such that

x̄ = lim
i∈I0,i→∞

xi

for some subsequence indexed byI0. Since the feasible set
X is closed,x̄ must also be feasible. Furthermore, since the
projection mapping and the functionf are both continuous, it
follows that

lim
i∈I0,i→∞

di+1
1 = lim

i∈I0,i→∞
PX1(x

i
1 −∇x1f(zi

0))− xi
1

= PX1 [x̄1 −∇X1f(x̄)]− x̄1 , d̄1

and
lim

i∈I0,i→∞
f(xi) = f(x̄).

Notice that the function values{f(xi)} are decreasing and
bounded below, thenf(xi) → f(x̄). Since f(x) is twice
continuously differentiable and the feasible setX is bounded,
it follows that

B = max
k=1,2,...,K

max
xk∈Xk

‖∇2
xk

f(x)‖ < ∞.

Because the projection operator is non-expansive and∇f(x)
is continuous in bounded region, we obtain from (17) that

‖di+1
k ‖ = ‖PXk

[xi
k −∇xk

f(zi+1
k−1)]− PXk

[xi
k]‖

≤ ‖[xi
k −∇xk

f(zi+1
k−1)]− xi

k‖ = ‖∇xk
f(zi+1

k−1)‖.

Denotingmaxx∈X ‖∇f(x)‖ , M, hence we have

‖di+1
k ‖ ≤ ‖∇xk

f(zi+1
k−1)‖ ≤ M < +∞. (28)

The lower bound and upper bound on‖∇xk
f(zi+1

k−1)‖ is very
helpful in estimating the decrease value of the function.

We proceed by contradiction and supposex̄ is not a KKT
point. Thend̄ = PX [x̄−∇f(x̄)]−x̄ 6= 0 so thatδ = ‖d̄‖ > 0.
Let

k∗ = min{k | δk = ‖d̄k‖ > 0},
and supposek∗ > 1 without loss of generality. By definition,
we have

lim
i∈I0,i→∞

‖di+1
k ‖ = δk = 0, for k < k∗.

Recall the definition ofzi+1
k (16). Since

‖zi+1
1 − x̄‖ = ‖xi

1 + αi+1
1 di+1

1 − x̄1‖
≤ ‖xi

1 − x̄1‖+ αi+1
1 ‖di+1

1 ‖
≤ ‖xi

1 − x̄1‖+ ‖di+1
1 ‖ −→

i∈I0,i→∞
0,

we havelimi∈I0,i→∞ zi+1
1 = x̄. In general, the same argument

shows that

lim
i∈I0,i→∞

zi+1
k = x̄, ∀ k < k∗.

Consequently, there holds

lim
i∈I0,i→∞

∇xk∗ f(zi+1
k∗−1) = ∇xk∗ f(x̄)

lim
i∈I0,i→∞

di+1
k∗ = d̄k∗ .

(29)

Let us use θ̄k∗ to denote the angle between̄dk∗ and
∇xk∗ f(x̄). Sinceȳk∗ = x̄k∗ − ∇xk∗ f(x̄) /∈ Xk∗ , it follows
from the property of projection that

(x̄k∗ − PXk∗ [ȳk∗ ])
T (ȳk∗ − PXk∗ [ȳk∗ ]) ≤ 0,

which further implies

‖PXk∗ [ȳk∗ ]− x̄k∗‖2
≤ (x̄k∗ − PXk∗ [ȳk∗ ])T (x̄k∗ − ȳk∗)
= ‖PXk∗ [ȳk∗ ]− x̄k∗‖‖∇xk∗ f(x̄)‖ cos θ̄k∗ .

Canceling the factor‖PXk∗ [ȳk∗ ]− x̄k∗‖ 6= 0 from both sides
yields

δk∗ = ‖d̄k∗‖ = ‖PXk∗ [ȳk∗ ]− x̄k∗‖
≤ ‖∇xk∗ f(x̄)‖ cos θ̄k∗

≤ M cos θ̄k∗ ,

where the last inequality follows from (28). Thus, we have

cos θ̄k∗ ≥ δk∗

M
. (30)

Now we can use the property (28), (29) and (30) to conclude

‖∇xk∗ f(zi+1
k∗−1)‖ ≥ ‖di+1

k∗ ‖ ≥
δk∗

2
and cos θi+1

k∗ ≥ δk∗

2M
,

for all i ∈ I0 andi ≥ i0, wherei0 is a sufficiently large integer
andθi+1

k∗ denotes the angle between∇xk∗ f(zi+1
k∗−1) anddi+1

k∗ .
Now we can use (23)-(25) of Claim 1 to obtain a contradic-

tion. In particular, we consider (31), which is a contradiction.
The fourth inequality is due to the sufficient decrease condition
and the fifth inequality is due to Claim 1. Therefore,x̄ is a
stationary point.
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h(yi + αiγ
−1di) = h(yi) + αiγ

−1∇h(yi)
T
di +

α2
i γ
−2

2
diT∇2h(ξ)di

≤ h(yi) + αiγ
−1∇h(d)iT di +

α2
i γ
−2

2
B‖di‖2.

(27)

+∞ >
∑

i

(
f(xi)− f(xi+1)

) ≥
∑

i∈I0

(
f(xi)− f(xi+1)

)

≥
∑

i∈I0

(
f(zi+1

k∗−1)− f(zi+1
k∗ )

) ≥
∑

i∈I0

(
−c1α

i+1
k∗ ∇xk∗ f(zi+1

k∗−1)
T
di+1

k∗

)

≥
∑

i∈I0




2c1(1− c1)
(
∇xk∗ f(zi+1

k∗−1)
T
di+1

k∗

)2

Bγ‖di+1
k∗ ‖2




=
∑

i∈I0

(
2c1(1− c1)

(‖∇xk∗ f(zi+1
k∗−1)‖‖di+1

k∗ ‖ cos θi+1
k∗

)2

Bγ‖di+1
k∗ ‖2

)

=
∑

i∈I0

(
2c1(1− c1)

(‖∇xk∗ f(zi+1
k∗−1)‖ cos θi+1

k∗
)2

Bγ

)

≥
∑

i≥i0, i∈I0

(
c1(1− c1)δ4

k∗

8BγM2

)
= +∞,

(31)
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